1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ such that $\overline{\mathrm{b}}+\lambda \overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{c}}$, then $\lambda$ is

A
  $\frac{1}{2}$
B
$\frac{1}{4}$
C
$\frac{1}{6}$
D
$\frac{1}{8}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of integer values of $m$, for which $x$-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer, is

A
2
B
0
C
4
D
1
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan ^{-1}(x+2)+\tan ^{-1}(x-2)-\tan ^{-1}\left(\frac{1}{2}\right)=0$, then one value of $x$ is

A
$-$1
B
$\frac{1}{2}$
C
1
D
2
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$\left(\frac{-x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
C
$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
D
$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
MHT CET Papers
EXAM MAP