1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=2 \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ where $x>0$ and c is a constant of integration, then $\mathrm{f}(x)$ is

A
$\mathrm{e}^x-1$
B
$\sqrt{\mathrm{e}^x-1}$
C
$\mathrm{e}^x+1$
D
$\sqrt{\mathrm{e}^x+1}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\left(\frac{1+\tan x}{1+\sin x}\right)^{\operatorname{cosec} x}$ is continuous at $x=0$ then $f(0)$ is equal to

A
0
B
1
C
$\mathrm{e}$
D
$\mathrm{\frac{1}{e}}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos \left(2 \cos ^{-1} x+\sin ^{-1} x\right)$ at $x=\frac{1}{5}$ is

A
$-\frac{\sqrt{6}}{5}$
B
$\frac{2 \sqrt{6}}{5}$
C
$-\frac{2 \sqrt{6}}{5}$
D
$\frac{2 \sqrt{5}}{6}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int_\limits{\frac{-\pi}{4}}^{\frac{\pi}{4}}(\sin x)^{-4} \mathrm{~d} x$ has the value

A
$\frac{-3}{2}$
B
$\frac{3}{2}$
C
$\frac{-8}{3}$
D
  $\frac{8}{3}$
MHT CET Papers
EXAM MAP