1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vector equation of the plane passing through the point $\mathrm{A}(1,2,-1)$ and parallel to the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+3 \hat{k}$ is

A
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=-9$
B
$\overline{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=9$
C
$\overline{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})=9$
D
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-9$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, if $\mathrm{m} \angle \mathrm{A}=45^{\circ}, \mathrm{m} \angle B=75^{\circ}$, then $\mathrm{a}+\mathrm{c} \sqrt{2}$ has the

A
$b$
B
$\frac{b}{2}$
C
$2b$
D
$3b$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

A
1
B
$-$1
C
2
D
0
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are mutually perpendicular vectors having magnitudes $1,2,3$ respectively, then the value of $\left[\begin{array}{lll}\bar{a}+\bar{b}+\bar{c} & \bar{b}-\bar{a} & \bar{c}\end{array}\right]$ is

A
0
B
6
C
12
D
18
MHT CET Papers
EXAM MAP