1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The graphical solution set of the system of inequations $x+y \geq 1,7 x+9 y \leq 63, y \leq 5, x \leq 6$, $x \geq 0, y \geq 0$ is represented by

MHT CET 2024 10th May Evening Shift Mathematics - Linear Programming Question 13 English

A
Fig. 1
B
Fig. 2
C
Fig. 3
D
Fig. 4
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\tan \left(\cos ^{-1} \frac{1}{\sqrt{2}}+\tan ^{-1} \frac{1}{2}\right)=$

A
1
B
2
C
3
D
4
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^2 y^2=\sin ^{-1} x+\cos ^{-1} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ and $y=2$ is

A
$\frac{1}{2}$
B
$2$
C
$-\frac{1}{2}$
D
$-2$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$ is

A
$-\hat{i}+\hat{j}-2 \hat{k}$
B
$-\hat{i}+\hat{j}-\hat{k}$
C
$-\hat{i}-\hat{j}+\hat{k}$
D
$\hat{i}+\hat{j}+\hat{k}$
MHT CET Papers
EXAM MAP