1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

A
$8 x+y-13 z+27=0$
B
$2 x+y+z=0$
C
$3 x-y-z-10=0$
D
$8 x+14 y+13 z+37=0$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x, y, z$ are in Arithmetic Progression and $\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$ are also in Arithmetic progression, where $x, z>0$ and $x z<1, y<1$, then

A
$x=y=z$
B
$2 x=3 y=6 z$
C
$6 x=3 y=2 z$
D
$6 x=4 y=3 z$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$ w.r.t. $\cos ^{-1}\left(4 x^3-3 x\right)$ is

A
$\frac{-1}{6}$
B
$\frac{2}{3}$
C
$\frac{3}{2}$
D
$\frac{1}{6}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{f}(x)=4 x^3-\frac{3}{x^4}$ such that $\mathrm{f}(2)=0$, then $\mathrm{f}(x)$ is equal to

A
$x^4+\frac{1}{x^3}+\frac{129}{8}$
B
$x^4+\frac{1}{x^3}-\frac{129}{8}$
C
$x^3+\frac{1}{x^4}+\frac{129}{8}$
D
  $x^3+\frac{1}{x^4}-\frac{129}{8}$
MHT CET Papers
EXAM MAP