If current of 4 A produces magnetic flux of $3 \times 10^{-3} \mathrm{~Wb}$ through a coil of 400 turns, the energy stored in the coil will be
Two bodies A and B have their moments of inertia $I_1$ and $I_2$ respectively about their axis of rotation. If their kinetic energies of rotation are equal and their angular momenta $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively are in the ratio $1: \sqrt{3}$, then $I_2$ will be
A body starts from rest from a distance $\mathrm{R}_0$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of the earth will be ( $R=$ radius of earth, $M=$ mass of earth)
Two metal spheres are falling through a liquid of density $2.5 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$ with the same uniform speed. The density of material of first sphere and second sphere is $11.5 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$ and $8.5 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$ respectively. The ratio of the radius of first sphere to that of second sphere is