1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x, y, z$ are in Arithmetic Progression and $\tan ^{-1} x, \tan ^{-1} y, \tan ^{-1} z$ are also in Arithmetic progression, where $x, z>0$ and $x z<1, y<1$, then

A
$x=y=z$
B
$2 x=3 y=6 z$
C
$6 x=3 y=2 z$
D
$6 x=4 y=3 z$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$ w.r.t. $\cos ^{-1}\left(4 x^3-3 x\right)$ is

A
$\frac{-1}{6}$
B
$\frac{2}{3}$
C
$\frac{3}{2}$
D
$\frac{1}{6}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{f}(x)=4 x^3-\frac{3}{x^4}$ such that $\mathrm{f}(2)=0$, then $\mathrm{f}(x)$ is equal to

A
$x^4+\frac{1}{x^3}+\frac{129}{8}$
B
$x^4+\frac{1}{x^3}-\frac{129}{8}$
C
$x^3+\frac{1}{x^4}+\frac{129}{8}$
D
  $x^3+\frac{1}{x^4}-\frac{129}{8}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow 0} \frac{9^x-4^x}{x\left(9^x+4^x\right)}=$$

A
$\log \left(\frac{3}{2}\right)$
B
$\frac{1}{2} \log \left(\frac{3}{2}\right)$
C
$2 \log \left(\frac{3}{2}\right)$
D
$2 \log \left(\frac{9}{4}\right)$
MHT CET Papers
EXAM MAP