1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

A
1
B
$-$1
C
2
D
0
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are mutually perpendicular vectors having magnitudes $1,2,3$ respectively, then the value of $\left[\begin{array}{lll}\bar{a}+\bar{b}+\bar{c} & \bar{b}-\bar{a} & \bar{c}\end{array}\right]$ is

A
0
B
6
C
12
D
18
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The volume of a ball is increasing at the rate of $4 \pi \mathrm{cc} / \mathrm{sec}$. The rate of increase of the radius, when the volume is $288 \pi \mathrm{cc}$, is

A
$\frac{1}{6} \mathrm{~cm} / \mathrm{sec}$
B
$\frac{1}{36} \mathrm{~cm} / \mathrm{sec}$
C
$6 \mathrm{~cm} / \mathrm{sec}$
D
$36 \mathrm{~cm} / \mathrm{sec}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\frac{\pi}{4}} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x=$$

A
$\frac{\pi}{2} \log 2$
B
$\frac{\pi}{4} \log 2$
C
$\frac{\pi}{6} \log 2$
D
$\frac{\pi}{8} \log 2$
MHT CET Papers
EXAM MAP