1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^2 y^2=\sin ^{-1} x+\cos ^{-1} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ and $y=2$ is

A
$\frac{1}{2}$
B
$2$
C
$-\frac{1}{2}$
D
$-2$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$ is

A
$-\hat{i}+2 \hat{j}-2 \hat{k}$
B
$-\hat{i}+\hat{j}-\hat{k}$
C
$-\hat{i}-\hat{j}+\hat{k}$
D
$\hat{i}+\hat{j}+\hat{k}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The expression $((p \wedge q) \vee(p \vee \sim q)) \wedge(\sim p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge \mathrm{q}$
B
$\mathrm{p} \vee \sim \mathrm{q}$
C
$\mathrm{p} \wedge \sim \mathrm{q}$
D
$(\sim p) \wedge(\sim q)$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=4 x-5$ is a tangent to the curve $y^2=p x^3+q$ at $(2,3)$, then the values of $p$ and $q$ are respectively

A
$-2,7$
B
$7,-2$
C
$2,-7$
D
$-7,-2$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12