1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\mathrm{e}^{y-x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y\left(\frac{\sin x+\cos x}{1+y \log y}\right)$ is

A
$\mathrm{e}^y \log y=\mathrm{e}^{\mathrm{x}} \sin x+\mathrm{c}$, where c is a constant of integration.
B
$\mathrm{e}^y=\mathrm{e}^x \sin x+\mathrm{c}$, where c is a constant of integration.
C
$\log y=\mathrm{e}^x \sin x+\mathrm{c}$, where c is a constant of integration.
D
$y \log y=\mathrm{e}^x \sin x+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Minimum number of times a fair coin must be tossed, so that the probability of getting at least one head, is more than $99 \%$ is

A
5
B
6
C
7
D
8
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vector of magnitude 6 units and perpendicular to vectors $2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ is

A
$2 \sqrt{3}(-\hat{i}+\hat{j}+\hat{k})$
B
$2 \sqrt{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$2 \sqrt{3}(\hat{i}+\hat{j}+\hat{k})$
D
$2 \sqrt{3}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between lines $\bar{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\bar{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is

A
$\frac{4 \sqrt{2}}{19}$ units
B
$\frac{3 \sqrt{2}}{\sqrt{19}}$ units
C
$\frac{5 \sqrt{2}}{\sqrt{19}}$ units
D
$\frac{2 \sqrt{2}}{\sqrt{19}}$ units
MHT CET Papers
EXAM MAP