1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\mathrm{e}^{y-x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y\left(\frac{\sin x+\cos x}{1+y \log y}\right)$ is

A
$\mathrm{e}^y \log y=\mathrm{e}^{\mathrm{x}} \sin x+\mathrm{c}$, where c is a constant of integration.
B
$\mathrm{e}^y=\mathrm{e}^x \sin x+\mathrm{c}$, where c is a constant of integration.
C
$\log y=\mathrm{e}^x \sin x+\mathrm{c}$, where c is a constant of integration.
D
$y \log y=\mathrm{e}^x \sin x+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Minimum number of times a fair coin must be tossed, so that the probability of getting at least one head, is more than $99 \%$ is

A
5
B
6
C
7
D
8
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vector of magnitude 6 units and perpendicular to vectors $2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ is

A
$2 \sqrt{3}(-\hat{i}+\hat{j}+\hat{k})$
B
$2 \sqrt{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$2 \sqrt{3}(\hat{i}+\hat{j}+\hat{k})$
D
$2 \sqrt{3}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between lines $\bar{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\bar{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is

A
$\frac{4 \sqrt{2}}{19}$ units
B
$\frac{3 \sqrt{2}}{\sqrt{19}}$ units
C
$\frac{5 \sqrt{2}}{\sqrt{19}}$ units
D
$\frac{2 \sqrt{2}}{\sqrt{19}}$ units
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12