1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let two non-collinear unit vectors $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ form an acute angle. A point P moves, so that at any time $t$ the position vector $\overline{O P}$, where $O$ is the origin, is given by $\hat{a} \cos t+\hat{b} \sin t$. When $P$ is farthest from origin O , let M be the length of $\overline{\mathrm{OP}}$ and $\hat{\mathrm{u}}$ be the unit vector along $\overline{\mathrm{OP}}$, then

A
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}+\hat{\mathrm{b}}}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}$ and $M=(1+\hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$
B
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}-\hat{\mathrm{b}}}{|\hat{\mathrm{a}}-\hat{\mathrm{b}}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
C
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}+\hat{\mathrm{b}}}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}$ and $\mathrm{M}=(1+2 \hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$
D
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}-\hat{\mathrm{b}}}{|\hat{\mathrm{a}}-\hat{\mathrm{b}}|}$ and $\mathrm{M}=(1-2 \hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vector equation of the plane passing through the point $\mathrm{A}(1,2,-1)$ and parallel to the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+3 \hat{k}$ is

A
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=-9$
B
$\overline{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=9$
C
$\overline{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})=9$
D
$\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-9$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, if $\mathrm{m} \angle \mathrm{A}=45^{\circ}, \mathrm{m} \angle B=75^{\circ}$, then $\mathrm{a}+\mathrm{c} \sqrt{2}$ has the

A
$b$
B
$\frac{b}{2}$
C
$2b$
D
$3b$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

A
1
B
$-$1
C
2
D
0
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12