1
GATE EE 2016 Set 1
Numerical
+1
-0
The magnitude of three-phase fault currents at buses A and B of a power system are 10 pu and 8 pu, respectively. Neglect all resistances in the system and consider the pre-fault system to be unloaded. The pre-fault voltage at all buses in the system is 1.0 pu. The voltage magnitude at bus B during a three-phase fault at bus A is 0.8 pu. The voltage magnitude at bus A during a three-phase fault at bus B in pu, is __________.
Your input ____
2
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
In a 100 bus power system, there are 10 generators. In a particular iteration of Newton Raphson load flow technique (in polar coordinates), two of the PV buses are converted to PQ type. In this iteration.
A
the number of unknown voltage angles increases by two and the number of unknown voltage magnitudes increases by two.
B
the number of unknown voltage angles remains unchanged and the number of unknown voltage magnitudes increases by two.
C
the number of unknown voltage angles increases by two and the number of unknown voltage magnitudes decreases by two.
D
the number of unknown voltage angles remains unchanged and the number of unknown voltage magnitudes decreases by two
3
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The value of $$\int_{-\infty}^{+\infty}e^{-t}\partial\left(2t-2\right)dt$$. where $$\partial\left(t\right)$$ is the Dirac delta function, is
A
$$\frac1{2e}$$
B
$$\frac2e$$
C
$$\frac1{e^2}$$
D
$$\frac1{2e^2}$$
4
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider a continuous-time system with input x(t) and output y(t) given by $$y\left(t\right)=x\left(t\right)\cos\left(t\right)$$. This system is
A
linear and time-invariant
B
Non-linear and time-invariant
C
linear and time-varying
D
Non-linear and time-varying
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12