1
GATE EE 2013
MCQ (Single Correct Answer)
+1
-0.3
The flux density at a point in space is given by $$\overrightarrow B=\;4x{\widehat a}_x\;+\;2ky{\widehat a}_y\;+\;8{\widehat a}_z\;\;Wb/m^2$$. The value of constant k must be equal to
A
-2
B
-0.5
C
+0.5
D
+2
2
GATE EE 2013
MCQ (Single Correct Answer)
+1
-0.3
Square roots of $$-i,$$ where $$i = \sqrt { - 1} $$ are
A
$$i, -i$$
B
$$\eqalign{ & \cos \left( { - {\pi \over 4}} \right) + \sin \left( { - {\pi \over 4}} \right), \cr & \cos \left( {{{3\pi } \over 4}} \right) + i\,\sin \left( {{{3\pi } \over 4}} \right) \cr} $$
C
$$\eqalign{ & \cos \left( {{\pi \over 4}} \right) + i\sin \left( {{{3\pi } \over 4}} \right), \cr & \cos \left( {{{3\pi } \over 4}} \right) + i\sin \left( {{\pi \over 4}} \right) \cr} $$
D
$$\eqalign{ & \cos \left( {{{3\pi } \over 4}} \right) + i\sin \left( { - {{3\pi } \over 4}} \right), \cr & \cos \left( { - {{3\pi } \over 4}} \right) + i\sin \left( {{{3\pi } \over 4}} \right) \cr} $$
3
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
$$\oint {{{{z^2} - 4} \over {{z^2} + 4}}} dz\,\,$$ evaluated anticlockwise around the circular $$\left| {z - i} \right| = 2,$$ where $$i = \sqrt { - 1} $$, is
A
$$ - 4\pi $$
B
$$0$$
C
$$2 + \pi $$
D
$$2+2$$
4
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
The equation $$\left[ {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$ has
A
no solution
B
only one solution
C
non-zero unique solution
D
multiple solutions
EXAM MAP