1
GATE EE 2000
Subjective
+5
-0
Consider the state equation $$\mathop X\limits^ \bullet \left( t \right) = Ax\left( t \right)$$
Given : $${e^{AT}} = \left[ {\matrix{ {{e^{ - t}} + t{e^{ - t}}} & {t{e^{ - t}}} \cr { - t{e^{ - t}}} & {{e^{ - t}} - t{e^{ - t}}} \cr } } \right]$$

(a) Find a set of states $${x_1}\left( 1 \right)$$ and $${x_2}\left( 1 \right)$$ such that $${x_1}\left( 2 \right) = 2.$$
(b) Show that $$\,{\left( {s{\rm I} - A} \right)^{ - t}} = \Phi \left( s \right) = {1 \over \Delta }\left[ {\matrix{ {s + 2} & 1 \cr { - 1} & s \cr } } \right];$$ $$\Delta = {\left( {s + 1} \right)^2}$$
(c) From $$\Phi \left( s \right),$$ find the matrix $$A$$.

2
GATE EE 2000
+2
-0.6
The minimal product-of-sums function described by the $$K$$-map given in Fig.
A
$$\overline A \overline C$$
B
$$\overline A + \overline C$$
C
$$A+C$$
D
$$AC$$
3
GATE EE 2000
+2
-0.6
A dual-slope analog-to-digital converter uses an $$N$$-bit counter. When the input signal $${V_a}$$ is being integrated, the counter is allowed to count up to a value:
A
equal to $${2^N} - 2$$
B
equal to $${2^N} - 1$$
C
proportional to $${V_a}$$
D
inversely proportional to $${V_a}$$
4
GATE EE 2000
Subjective
+2
-0
The counter shown in Fig. is initially in state $${Q_2} = 0,\,{Q_1} = 1,\,{Q_0} = 0.$$ With reference to the $$CLK$$ input, draw waveforms for $${Q_2},{Q_1},{Q_0}$$ and $$P$$ for the next three $$CLK$$ cycles.
GATE EE Papers
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET