1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If for certain $x, 3 \cos x \neq 2 \sin x$, then the general solution of, $\sin ^2 x-\cos 2 x=2-\sin 2 x$, is

A
$(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{Z}$
B
$(2 \mathrm{n}+1) \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
D
$\frac{\mathrm{n} \pi}{2}+1, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a game, 3 coins are tossed. A person is paid ₹ 100$, if he gets all heads or all tails; and he is supposed to pay ₹ 40 , if he gets one head or two heads. The amount he can expect to win/lose on an average per game in (₹) is

A
10 loss
B
5 loss
C
5 gain
D
10 gain
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The curve $x^4-2 x y^2+y^2+3 x-3 y=0$ cuts the X -axis at $(0,0)$ at an angle of

A
$\frac{\pi}{4}$
B
$\frac{\pi}{2}$
C
0
D
$\frac{\pi}{6}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The abscissae of the two points A and B are the roots of the equation $x^2+2 a x-b^2=0$ and their ordinates are roots of the equation $y^2+2 p y-q^2=0$. Then the equation of the circle with AB as diameter is given by

A
$x^2+y^2-2 \mathrm{a} x-2 \mathrm{p} y+\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
B
$x^2+y^2-2 \mathrm{a} x-2 \mathrm{p} y-\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
C
$x^2+y^2+2 \mathrm{a} x+2 \mathrm{p} y+\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
D
$x^2+y^2+2 \mathrm{a} x+2 \mathrm{p} y-\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
MHT CET Papers
EXAM MAP