1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A+B=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ where $A$ is symmetric and $B$ is skew-symmetric matrix, then the matrix $\left(A^{-1} B+A B^{-1}\right)$ at $\theta=\frac{\pi}{6}$ is given by

A
$\left[\begin{array}{cc}1 & 2 \sqrt{3} \\ 2 \sqrt{3} & 1\end{array}\right]$
B
$\left[\begin{array}{cc}-1 & -2 \sqrt{3} \\ 2 \sqrt{3} & 1\end{array}\right]$
C
$\left[\begin{array}{cc}0 & 2 \sqrt{3} \\ 2 \sqrt{3} & 0\end{array}\right]$
D
$\left[\begin{array}{cc}0 & -2 \sqrt{3} \\ 2 \sqrt{3} & 0\end{array}\right]$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If, $\int \frac{d \theta}{\cos ^2 \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{\mathrm{e}}|\mathrm{f}(\theta)|+\mathrm{c}$ (where c is a constant of integration), then the ordered pair $(\lambda,|f(\theta)|)$ is equal to

A
$(1,|1+\tan \theta|)$
B
$(1,1-1-\tan \theta \mid)$
C
$(-1,|1+\tan \theta|)$
D
$(-1,|1-\tan \theta|)$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The domain of definition of the function $y(x)$ is given by the equation $2^x+2^y=2$, is

A
$0< x \leq 1$
B
$0 \leq x \leq 1$
C
$-\infty< x \leq 0$
D
$-\infty< x<1$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=6 x, 0

A
$y=\cos x+3 x^2+\mathrm{c}$, where c is a constant of integration.
B
$y+\cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
C
$y=3 x^2 \cos x+\cos x$, where c is a constant of integration.
D
$y \cdot \cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12