1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $x^3-2 x^2+3 x+2$ at $x=2.01$ is

A
8.07
B
8.27
C
8.007
D
8.17
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+1}{x+y-1}$ is

A
$y=x+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
B
$y=x-\log (x+y)+\mathrm{c}$, where c is a constant of integration.
C
$y=x-\log (2 x+y)+\mathrm{c}$, where c is a constant of integration.
D
$y=x^2+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

There are three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$, one of which must and only one can happen. The odds are 8:3 against $\mathrm{A}, 5: 2$ against B and the odds against C is $43: 17 \mathrm{k}$, then value of k is

A
$\frac{1}{2}$
B
2
C
$\frac{1}{3}$
D
$\frac{1}{4}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\operatorname{cosec} \theta$ is

A
$\frac{3 \sqrt{3}}{2}$
B
$\frac{2 \sqrt{2}}{3}$
C
$\frac{2}{\sqrt{3}}$
D
$\frac{3}{2 \sqrt{2}}$
MHT CET Papers
EXAM MAP