1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A point moves along the arc of parabola $y=2 x^2$. Its abscissa increases uniformly at the rate of 2 units $/ \mathrm{sec}$. At the instant, the point is passing through ( 1,2 ), its distance from origin is increasing at the rate of

A
$\frac{36}{\sqrt{5}}$ units/sec.
B
$\frac{18}{\sqrt{5}}$ units $/ \mathrm{sec}$.
C
$\frac{36}{5}$ units/sec.
D
$\frac{18}{5}$ units $/ \mathrm{sec}$.
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad \int(2 x+4) \sqrt{x-1} \mathrm{~d} x=\mathrm{a}(x-1)^{\frac{5}{2}}+\mathrm{b}(x-1)^{\frac{3}{2}}+\mathrm{c}$, (where c is a constant of integration), then the value of $a+b$ is

A
$\frac{46}{5}$
B
$\frac{16}{15}$
C
$\frac{24}{5}$
D
$\frac{13}{15}$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the angles $\mathrm{A}, \mathrm{B}$ and C of a triangle ABC are in the ratio $2: 3: 7$ respectively, then the sides a, b and c are respectively in the ratio

A
$2: \sqrt{2}:(\sqrt{3}+1)$
B
  $\sqrt{2}: 2:(\sqrt{3}+1)$
C
$(\sqrt{3}+1): \sqrt{2}: 2$
D
$2:(\sqrt{3}+1): \sqrt{2}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is

A
$\frac{1}{8}$
B
$\frac{-1}{8}$
C
$\frac{1}{16}$
D
$\frac{-1}{16}$
MHT CET Papers
EXAM MAP