1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Water is running in a hemispherical bowl of radius 180 cm at the rate of 108 cubic decimeters per minute. How fast the water level is rising when depth of the water level in the bowl is 120 cm ? ( 1 decimeter $=10 \mathrm{~cm}$)

A
$16 \pi \mathrm{~cm} / \mathrm{s}$
B
$\frac{16}{\pi} \mathrm{~cm} / \mathrm{s}$
C
$\frac{1}{16 \pi} \mathrm{~cm} / \mathrm{s}$
D
$\frac{\pi}{16} \mathrm{~cm} / \mathrm{s}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{S}_1=\sum_\limits{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}, \mathrm{S}_2=\sum_\limits{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^2$ and $\mathrm{S}_3=\sum_\limits{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^3$, then the value of $\lim _\limits{n \rightarrow \infty} \frac{s_1\left(1+\frac{s_3}{4}\right)}{s_2^2}$ is

A
$\frac{9}{16}$
B
$\frac{9}{2}$
C
$\frac{9}{32}$
D
$\frac{9}{8}$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The numerical value of $\tan \left(2 \tan ^{-1}\left(\frac{1}{5}\right)+\frac{\pi}{4}\right)$

A
$\frac{-7}{17}$
B
$\frac{-17}{7}$
C
$\frac{17}{7}$
D
$\frac{7}{17}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three vectors having magnitudes 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is

A
$\frac{\pi}{3}$
B
$\frac{\pi}{6}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{12}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12