1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{A}, \bar{B}, \bar{C}$ be vectors of lengths 3 units, 4 units, 5 units respectively. let $\bar{A}$ be perpendicular to $\overline{\mathrm{B}}+\overline{\mathrm{C}}, \overline{\mathrm{B}}$ be perpendicular to $\overline{\mathrm{C}}+\overline{\mathrm{A}}$ and $\overline{\mathrm{C}}$ be perpendicular to $\bar{A}+\bar{B}$, then the length of vector $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$ is

A
$2 \sqrt{5}$
B
$\sqrt{30}$
C
$\sqrt{45}$
D
$5 \sqrt{2}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $x^3-2 x^2+3 x+2$ at $x=2.01$ is

A
8.07
B
8.27
C
8.007
D
8.17
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+1}{x+y-1}$ is

A
$y=x+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
B
$y=x-\log (x+y)+\mathrm{c}$, where c is a constant of integration.
C
$y=x-\log (2 x+y)+\mathrm{c}$, where c is a constant of integration.
D
$y=x^2+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

There are three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$, one of which must and only one can happen. The odds are 8:3 against $\mathrm{A}, 5: 2$ against B and the odds against C is $43: 17 \mathrm{k}$, then value of k is

A
$\frac{1}{2}$
B
2
C
$\frac{1}{3}$
D
$\frac{1}{4}$
MHT CET Papers
EXAM MAP