Let $\bar{A}, \bar{B}, \bar{C}$ be vectors of lengths 3 units, 4 units, 5 units respectively. let $\bar{A}$ be perpendicular to $\overline{\mathrm{B}}+\overline{\mathrm{C}}, \overline{\mathrm{B}}$ be perpendicular to $\overline{\mathrm{C}}+\overline{\mathrm{A}}$ and $\overline{\mathrm{C}}$ be perpendicular to $\bar{A}+\bar{B}$, then the length of vector $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$ is
The approximate value of $x^3-2 x^2+3 x+2$ at $x=2.01$ is
The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+1}{x+y-1}$ is
There are three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$, one of which must and only one can happen. The odds are 8:3 against $\mathrm{A}, 5: 2$ against B and the odds against C is $43: 17 \mathrm{k}$, then value of k is