1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is

A
$\frac{1}{8}$
B
$\frac{-1}{8}$
C
$\frac{1}{16}$
D
$\frac{-1}{16}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ is

A
$\frac{-\pi}{6}$
B
$\frac{\pi}{6}$
C
$\frac{-\pi}{3}$
D
$\frac{\pi}{3}$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a Binomial distribution consisting of 5 independent trials, probabilities of exactly 1 and 2 successes are 0.4096 and 0.2048 respectively, then the probability, of getting exactly 4 successes, is

A
$\frac{80}{243}$
B
$\frac{40}{243}$
C
$\frac{32}{625}$
D
$\frac{4}{625}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function to be maximized is given by $Z=3 x+2 y$. The feasible region for this function is the shaded region given below, then the linear constraints for this region are given by

MHT CET 2024 10th May Morning Shift Mathematics - Linear Programming Question 12 English

A
$\begin{aligned} 3 x+8 y \leq 24,4 x+5 y \leq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0\end{aligned}$
B
$\begin{aligned} 3 x+8 y \geq 24,4 x+5 y \geq 20,5 x+3 y \leq 15, x \geq 0, y \geq 0\end{aligned}$
C
$3 x+8 y \leq 24,4 x+5 y \geq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0$
D
$3 x+8 y \geq 24,4 x+5 y \leq 20,5 x+3 y \leq 15 x \geq 0, y \geq 0$
MHT CET Papers
EXAM MAP