Equation of the plane, through the points $(-1,2,-2)$ and $(-1,3,2)$ and perpendicular to $y \mathrm{z}$ - plane, is
The values of $a$ and $b$, so that the function
$$f(x)= \begin{cases}x+\mathrm{a} \sqrt{2} \sin x & , 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b & , \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ \mathrm{a} \cos 2 x-\mathrm{b} \sin x & , \frac{\pi}{2}< x \leq \pi\end{cases}$$
is continuous for $0 \leq x \leq \pi$, are respectively given by
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ are unit vectors inclined at $\frac{\pi}{3}$ with each other and $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then the value of $5[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$
If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{-1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k is equal to