1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If, $\int \frac{d \theta}{\cos ^2 \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{\mathrm{e}}|\mathrm{f}(\theta)|+\mathrm{c}$ (where c is a constant of integration), then the ordered pair $(\lambda,|f(\theta)|)$ is equal to

A
$(1,|1+\tan \theta|)$
B
$(1,1-1-\tan \theta \mid)$
C
$(-1,|1+\tan \theta|)$
D
$(-1,|1-\tan \theta|)$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The domain of definition of the function $y(x)$ is given by the equation $2^x+2^y=2$, is

A
$0< x \leq 1$
B
$0 \leq x \leq 1$
C
$-\infty< x \leq 0$
D
$-\infty< x<1$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=6 x, 0

A
$y=\cos x+3 x^2+\mathrm{c}$, where c is a constant of integration.
B
$y+\cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
C
$y=3 x^2 \cos x+\cos x$, where c is a constant of integration.
D
$y \cdot \cos x=3 x^2+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane, through the points $(-1,2,-2)$ and $(-1,3,2)$ and perpendicular to $y \mathrm{z}$ - plane, is

A
$4 y+z=10$
B
$4 y-z+10=0$
C
$4 y-z=10$
D
$4 y+z+10=0$
MHT CET Papers
EXAM MAP