If $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ are unit vectors inclined at $\frac{\pi}{3}$ with each other and $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then the value of $5[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$
If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{-1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k is equal to
A point moves along the arc of parabola $y=2 x^2$. Its abscissa increases uniformly at the rate of 2 units $/ \mathrm{sec}$. At the instant, the point is passing through ( 1,2 ), its distance from origin is increasing at the rate of
If $\quad \int(2 x+4) \sqrt{x-1} \mathrm{~d} x=\mathrm{a}(x-1)^{\frac{5}{2}}+\mathrm{b}(x-1)^{\frac{3}{2}}+\mathrm{c}$, (where c is a constant of integration), then the value of $a+b$ is