1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a Binomial distribution consisting of 5 independent trials, probabilities of exactly 1 and 2 successes are 0.4096 and 0.2048 respectively, then the probability, of getting exactly 4 successes, is

A
$\frac{80}{243}$
B
$\frac{40}{243}$
C
$\frac{32}{625}$
D
$\frac{4}{625}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function to be maximized is given by $Z=3 x+2 y$. The feasible region for this function is the shaded region given below, then the linear constraints for this region are given by

A
$\begin{aligned} 3 x+8 y \leq 24,4 x+5 y \leq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0\end{aligned}$
B
$\begin{aligned} 3 x+8 y \geq 24,4 x+5 y \geq 20,5 x+3 y \leq 15, x \geq 0, y \geq 0\end{aligned}$
C
$3 x+8 y \leq 24,4 x+5 y \geq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0$
D
$3 x+8 y \geq 24,4 x+5 y \leq 20,5 x+3 y \leq 15 x \geq 0, y \geq 0$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the line, $\frac{x-3}{2}=\frac{y+2}{1}=\frac{z+4}{3}$ lies in the plane, $\ell x+m y-z=9$, then $\ell^2+m^2$ is equal to

A
$\frac{124}{49}$
B
$\frac{123}{49}$
C
$\frac{121}{49}$
D
$\frac{122}{49}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\sqrt{x}}{x+1} d x=$$

A
$\left(2 \sqrt{x}-\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
B
$2\left(\sqrt{x}-\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
C
$\left(2 \sqrt{x}+\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
D
$2\left(\sqrt{x}+\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12