1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a x^{n+1}+b x^{-n}$, then $x^2 \frac{d^2 y}{d x^2}=$

A
$\mathrm{n}(\mathrm{n}+1) y$
B
  $(\mathrm{n}+1)(\mathrm{n}-2) y$
C
$\mathrm{n}(\mathrm{n}-2) y$
D
$(\mathrm{n}+1) \mathrm{y}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{A}, \bar{B}, \bar{C}$ be vectors of lengths 3 units, 4 units, 5 units respectively. let $\bar{A}$ be perpendicular to $\overline{\mathrm{B}}+\overline{\mathrm{C}}, \overline{\mathrm{B}}$ be perpendicular to $\overline{\mathrm{C}}+\overline{\mathrm{A}}$ and $\overline{\mathrm{C}}$ be perpendicular to $\bar{A}+\bar{B}$, then the length of vector $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$ is

A
$2 \sqrt{5}$
B
$\sqrt{30}$
C
$\sqrt{45}$
D
$5 \sqrt{2}$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $x^3-2 x^2+3 x+2$ at $x=2.01$ is

A
8.07
B
8.27
C
8.007
D
8.17
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y+1}{x+y-1}$ is

A
$y=x+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
B
$y=x-\log (x+y)+\mathrm{c}$, where c is a constant of integration.
C
$y=x-\log (2 x+y)+\mathrm{c}$, where c is a constant of integration.
D
$y=x^2+\log (x+y)+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP