If variance of $$x_1, x_2 \ldots \ldots, x_n$$ is $$\sigma_x^2$$, then the variance of $$\lambda x_1, \lambda x_2, \ldots \ldots, \lambda x_{\mathrm{n}}(\lambda \neq 0)$$ is
If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is
If $$\mathrm{z}=x+\mathrm{i} y$$ and $$\mathrm{z}^{1 / 3}=\mathrm{p}+\mathrm{iq}$$, where $$x, y, \mathrm{p}, \mathrm{q} \in \mathrm{R}$$ and $$\mathrm{i}=\sqrt{-1}$$, then value of $$\left(\frac{x}{\mathrm{p}}+\frac{y}{\mathrm{q}}\right)$$ is
If $$\int \frac{\mathrm{d} x}{x \sqrt{1-x^3}}=\mathrm{k} \log \left(\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then value of $$\mathrm{k}$$ is