If $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are two unit vectors such that $$\overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
$$\int \frac{\log (\cot x)}{\sin 2 x} d x=$$
$$\text { If } y=\sqrt{\frac{1-\sin ^{-1}(x)}{1+\sin ^{-1}(x)}} \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { at } x=0 \text { and } y=1 \text { is }$$
A coil of radius '$$r$$' is placed on another coil (whose radius is $$\mathrm{R}$$ and current flowing through it is changing) so that their centres coincide $$(\mathrm{R} \gg \mathrm{r})$$. If both the coils are coplanar then the mutual inductance between them is ( $$\mu_0=$$ permeability of free space)