Five students are to be arranged on a platform such that the boy $$B_1$$ occupies the second position and such that the girl $$G_1$$ is always adjacent to the girl $$G_2$$. Then, the number of such possible arrangements is
If the volume of the parallelopiped is $$158 \mathrm{~cu}$$. units whose coterminus edges are given by the vectors $$\bar{a}=(\hat{i}+\hat{j}+n \hat{k}), \bar{b}=2 \hat{i}+4 \hat{j}-n \hat{k}$$ and $$\bar{c}=\hat{i}+n \hat{j}+3 \hat{k}$$, where $$n \geq 0$$, then the value of $$n$$ is
Let $$\mathrm{f}(x)$$ be positive for all real $$x$$. If $$\mathrm{I}_1=\int_\limits{1-\mathrm{h}}^{\mathrm{h}} x \mathrm{f}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{1-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(x(1-x)) \mathrm{d} x$$, where $$(2 h-1)>0$$, then $$\frac{I_1}{I_2}$$ is
The mirror image of the point $$(1,2,3)$$ in a plane is $$\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$$. Thus, the point _________ lies on this plane.