1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\omega \neq 1$$ be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form $$\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1\end{array}\right]$$ where each of $$a, b$$ and $$c$$ is either $$\omega$$ or $$\omega^2$$, then the number of distinct matrices in the set $$\mathrm{S}$$ is

A
2
B
6
C
4
D
8
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}$$

A
$$\tan ^{-1}\left(\frac{17}{31}\right)$$
B
$$\tan ^{-1}\left(\frac{19}{31}\right)$$
C
$$\tan ^{-1}\left(\frac{31}{17}\right)$$
D
$$\tan ^{-1}\left(\frac{31}{19}\right)$$
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$

A
$$-\cot \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\tan \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\tan \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\cot \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{b}=8, \mathrm{a}=6$$ and $$\mathrm{B}=\sin ^{-1} x$$, then $$x$$ has the value

A
$$\frac{\sqrt{3}}{2}$$
B
$$\frac{2}{\sqrt{3}}$$
C
$$2 \sqrt{3}$$
D
$$\frac{1}{2 \sqrt{3}}$$
MHT CET Papers
EXAM MAP