1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Value of $$c$$ satisfying the conditions and conclusions of Rolle's theorem for the function $$\mathrm{f}(x)=x \sqrt{x+6}, x \in[-6,0]$$ is

A
$$-4$$
B
4
C
3
D
$$-3$$
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three of six vertices of a regular hexagon are chosen at random. The probability that the triangle with these three vertices is equilateral, equals ___________.

A
$$\frac{1}{2}$$
B
$$\frac{1}{5}$$
C
$$\frac{1}{10}$$
D
$$\frac{1}{20}$$
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the direction cosines $$l, \mathrm{~m}, \mathrm{n}$$ of two lines are connected by relations $$l-5 \mathrm{~m}+3 \mathrm{n}=0$$ and $$7 l^2+5 \mathrm{~m}^2-3 \mathrm{n}^2=0$$, then value of $$l+\mathrm{m}+\mathrm{n}$$ is

A
$$\frac{2}{\sqrt{6}}$$ or $$\frac{6}{\sqrt{14}}$$
B
$$\frac{1}{\sqrt{6}}$$ or $$\frac{5}{\sqrt{14}}$$
C
$$\frac{2}{\sqrt{6}}$$ or $$\frac{5}{\sqrt{14}}$$
D
$$\frac{1}{\sqrt{6}}$$ or $$\frac{6}{\sqrt{14}}$$
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{f}(x)=\log (\sin x), 0 < x < \pi$$ and $$\mathrm{g}(x)=\sin ^{-1}\left(\mathrm{e}^{-x}\right), x \geq 0$$. If $$\alpha$$ is a positive real number such that $$\mathrm{a}=(\mathrm{fog})^{\prime}(\alpha)$$ and $$\mathrm{b}=(\mathrm{fog})(\alpha)$$, then

A
$$a \alpha^2-b \alpha-a=0$$
B
$$\mathrm{a} \alpha^2-\mathrm{b} \alpha-\mathrm{a}=1$$
C
$$a \alpha^2+b \alpha-a=-2 \alpha^2$$
D
$$\mathrm{a} \alpha^2+\mathrm{b} \alpha+\mathrm{a}=0$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12