1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A monoatomic gas at pressure '$$\mathrm{P}$$', having volume '$$\mathrm{V}$$' expands isothermally to a volume '$$2 \mathrm{~V}$$' and then adiabatically to a volume '$$16 \mathrm{~V}$$'. The final pressure of the gas is (Take $$\gamma=5 / 3$$ )

A
$$\mathrm{P} / 64$$
B
$$\mathrm{P} / 32$$
C
$$16 \mathrm{P}$$
D
$$32 \mathrm{P}$$
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In potentiometer experiments, two cells of e. m. f. '$$E_1$$' and '$$E_2$$' are connected in series $$\left(E_1>E_2\right)$$, the balancing length is $$64 \mathrm{~cm}$$ of the wire. If the polarity of $$E_2$$ is reversed, the balancing length becomes $$32 \mathrm{~cm}$$. The ratio $$\mathrm{E}_1 / \mathrm{E}_2$$ is

A
$$3: 2$$
B
$$2: 3$$
C
$$1: 3$$
D
$$3: 1$$
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A diatomic gas $$\left(\gamma=\frac{7}{5}\right)$$ is compressed adiabatically to volume $$\frac{V_i}{32}$$ where $$V_i$$ is its initial volume. The initial temperature of the gas is $$T_i$$ in Kelvin and the final temperature is '$$x T_i$$'. The value of '$$x$$' is

A
5
B
4
C
3
D
2
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A disc has mass $$M$$ and radius $$R$$. How much tangential force should be applied to the rim of the disc, so as to rotate with angular velocity '$$\omega$$' in time $$\mathrm{t}$$ ?

A
$$\frac{M R \omega}{4 t}$$
B
$$\frac{\mathrm{MR} \omega}{2 \mathrm{t}}$$
C
$$\frac{\mathrm{MR} \omega}{\mathrm{t}}$$
D
$$\mathrm{MR} \omega \mathrm{t}$$
MHT CET Papers
EXAM MAP