$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$
In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{b}=8, \mathrm{a}=6$$ and $$\mathrm{B}=\sin ^{-1} x$$, then $$x$$ has the value
If variance of $$x_1, x_2 \ldots \ldots, x_n$$ is $$\sigma_x^2$$, then the variance of $$\lambda x_1, \lambda x_2, \ldots \ldots, \lambda x_{\mathrm{n}}(\lambda \neq 0)$$ is
If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is