1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$

A
$$-\cot \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\tan \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\tan \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\cot \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{b}=8, \mathrm{a}=6$$ and $$\mathrm{B}=\sin ^{-1} x$$, then $$x$$ has the value

A
$$\frac{\sqrt{3}}{2}$$
B
$$\frac{2}{\sqrt{3}}$$
C
$$2 \sqrt{3}$$
D
$$\frac{1}{2 \sqrt{3}}$$
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If variance of $$x_1, x_2 \ldots \ldots, x_n$$ is $$\sigma_x^2$$, then the variance of $$\lambda x_1, \lambda x_2, \ldots \ldots, \lambda x_{\mathrm{n}}(\lambda \neq 0)$$ is

A
$$\lambda \cdot \sigma_x$$
B
$$\lambda \cdot \sigma_x^2$$
C
$$\lambda^2 \cdot \sigma_x$$
D
$$\lambda^2 \cdot \sigma_x^2$$
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is

A
$$\frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}$$
B
$$\frac{\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}$$
C
$$\frac{\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{11}}$$
D
$$\frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{11}}$$
MHT CET Papers
EXAM MAP