1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\mathrm{e}^x(1+x)}{\cos ^2\left(\mathrm{e}^x \cdot x\right)} \mathrm{d} x=$$

A
$$-\cot \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\tan \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\tan \left(\mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\cot \left(x \cdot \mathrm{e}^x\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $$\mathrm{ABC}$$, with usual notations, if $$\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{b}=8, \mathrm{a}=6$$ and $$\mathrm{B}=\sin ^{-1} x$$, then $$x$$ has the value

A
$$\frac{\sqrt{3}}{2}$$
B
$$\frac{2}{\sqrt{3}}$$
C
$$2 \sqrt{3}$$
D
$$\frac{1}{2 \sqrt{3}}$$
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If variance of $$x_1, x_2 \ldots \ldots, x_n$$ is $$\sigma_x^2$$, then the variance of $$\lambda x_1, \lambda x_2, \ldots \ldots, \lambda x_{\mathrm{n}}(\lambda \neq 0)$$ is

A
$$\lambda \cdot \sigma_x$$
B
$$\lambda \cdot \sigma_x^2$$
C
$$\lambda^2 \cdot \sigma_x$$
D
$$\lambda^2 \cdot \sigma_x^2$$
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is

A
$$\frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}$$
B
$$\frac{\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}$$
C
$$\frac{\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{11}}$$
D
$$\frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{11}}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12