If $$\mathrm{z}=x+\mathrm{i} y$$ and $$\mathrm{z}^{1 / 3}=\mathrm{p}+\mathrm{iq}$$, where $$x, y, \mathrm{p}, \mathrm{q} \in \mathrm{R}$$ and $$\mathrm{i}=\sqrt{-1}$$, then value of $$\left(\frac{x}{\mathrm{p}}+\frac{y}{\mathrm{q}}\right)$$ is
If $$\int \frac{\mathrm{d} x}{x \sqrt{1-x^3}}=\mathrm{k} \log \left(\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right)+\mathrm{c}$$, (where $$\mathrm{c}$$ is a constant of integration), then value of $$\mathrm{k}$$ is
The statement pattern $$\mathrm{p} \rightarrow \sim(\mathrm{p} \wedge \sim \mathrm{q})$$ is equivalent to
$$\mathrm{a}$$ and $$\mathrm{b}$$ are the intercepts made by a line on the co-ordinate axes. If $$3 \mathrm{a}=\mathrm{b}$$ and the line passes through $$(1,3)$$, then the equation of the line is