Two capillary tubes of the same diameter are kept vertically in two different liquids whose densities are in the ratio $$4: 3$$. The rise of liquid in two capillaries is '$$h_1$$' and '$$h_2$$' respectively. If the surface tensions of liquids are in the ratio $$6: 5$$, the ratio of heights $$\left(\frac{h_1}{h_2}\right)$$ is
(Assume that their angles of contact are same)
Two spherical black bodies of radii '$$r_1$$' and '$$r_2$$' at temperature '$$\mathrm{T}_1$$' and '$$\mathrm{T}_2$$' respectively radiate power in the ratio $$1: 2$$ Then $$r_1: r_2$$ is
For a particle executing S.H.M., its potential energy is 8 times its kinetic energy at certain displacement '$$x$$' from the mean position. If '$$A$$' is the amplitude of S.H.M the value of '$$x$$' is
The maximum kinetic energies of photoelectrons emitted are $$\mathrm{K}_1$$ and $$\mathrm{K}_2$$ when lights of wavelengths $$\lambda_1$$ and $$\lambda_2$$ are incident on a metallic surface. If $$\lambda_1=3 \lambda_2$$ then