1
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
The eigen values of a symmetric matrix are all
A
complex with non-zero positive imaginary part.
B
complex with non-zero negative imaginary part.
C
real
D
pure imaginary
2
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
Choose the CORRECT set of functions, which are linearly dependent.
A
$$\sin x,\,{\sin ^2}x$$ and $${\cos ^2}x$$
B
$$\cos x,\sin x$$ and $$\tan x$$
C
$$\cos \,2x,{\sin ^2}x$$ and $${\cos ^2}x$$
D
$$\cos \,2x,\sin x$$ and $$\cos x$$
3
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
The value of the definite integral $$\int_1^e {\sqrt x \ln \left( x \right)dx} $$ is
A
$${4 \over 9}\sqrt {{e^3}} + {2 \over 9}$$
B
$${2 \over 9}\sqrt {{e^3}} - {4 \over 9}$$
C
$${2 \over 9}\sqrt {{e^3}} + {4 \over 9}$$
D
$${4 \over 9}\sqrt {{e^3}} - {2 \over 9}$$
4
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
The following surface integral is to be evaluated over a sphere for the given steady velocity vector field $$F = xi + yj + zk$$ defined with respect to a Cartesian coordinate system having $$i, j$$ and $$k$$ as unit base vectors. $$$\int {\int\limits_S {{1 \over 4}\left( {F.n} \right)dA} } $$$

Where $$S$$ is the sphere, $$\,\,{x^2} + {y^2} + {z^2} = 1\,\,$$ and $$n$$ is the outward unit normal vector to the sphere. The value of the surface integral is

A
$$\pi $$
B
$$2$$$$\pi $$
C
$$3$$ $$\pi $$$$/4$$
D
$$4$$ $$\pi $$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12