1
GATE CSE 2016 Set 1
+1
-0.3
The worst case running times of Insertion sort, Merge sort and Quick sort, respectively, are:
A
$$\Theta \left( {n\,\log n} \right),\Theta \left( {n\,\log n} \right),\,\,$$ and $$\,\,\Theta \left( {{n^2}} \right)$$
B
$$\Theta \left( {{n^2}} \right),\Theta \left( {{n^2}} \right),\,\,$$ and $$\,\,\Theta \left( {n\,\log n} \right)$$
C
$$\Theta \left( {{n^2}} \right),\,\,\Theta \left( {n\,\log n} \right),\,\,$$ and $$\,\,\Theta \left( {n\,\log n} \right)$$
D
$$\Theta \left( {{n^2}} \right),\Theta \left( {n\,\log n} \right),\,\,$$ and $$\,\,\Theta \left( {{n^2}} \right)$$
2
GATE CSE 2016 Set 1
+2
-0.6
$$G = (V,E)$$ is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees $$(MSTs)$$ of $$G$$ is/are TRUE?

$$\,\,\,\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,\,\,\,\,\,$$ If $$e$$ is the lightest edge of some cycle in $$G,$$ then every $$MST$$ of $$G$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$includes $$e$$
$$\,\,\,\,\,\,\,\,{\rm I}{\rm I}.\,\,\,\,\,\,\,\,\,\,$$ If $$e$$ is the heaviest edge of some cycle in $$G,$$ then every $$MST$$ of $$G$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$excludes $$e$$

A
$${\rm I}$$ only
B
$${\rm I}$$$${\rm I}$$ only
C
both $${\rm I}$$ and $${\rm II}$$
D
neither $${\rm I}$$ nor $${\rm I}$$$${\rm I}$$
3
GATE CSE 2016 Set 1
Numerical
+2
-0
Consider the weighted undirected graph with $$4$$ vertices, where the weight of edge $$\left\{ {i,j} \right\}$$ is given by the entry $${W_{ij}}$$ in the matrix $$W.$$ $$W = \left[ {\matrix{ 0 & 2 & 8 & 5 \cr 2 & 0 & 5 & 8 \cr 8 & 5 & 0 & X \cr 5 & 8 & X & 0 \cr } } \right]$$\$

The largest possible integer value of $$x,$$ for which at least one shortest path between some pair of vertices will contain the edge with weight $$x$$ is _________________.

4
GATE CSE 2016 Set 1
+2
-0.6
An operator $$delete(i)$$ for a binary heap data structure is to be designed to delete the item in the $$i$$-th node. Assume that the heap is implemented in an array and i refers to the $$i$$-th index of the array. If the heap tree has depth $$d$$ (number of edges on the path from the root to the farthest leaf), then what is the time complexity to re-fix the heap efficiently after the removal of the element?
A
$$O\left( 1 \right)$$
B
$$O\left( d \right)$$ but not $$O\left( 1 \right)$$
C
$$O\left( {{2^d}} \right)$$ but not $$O\left( d \right)$$
D
$$O\left( {d{2^d}} \right)$$ but not $$O\left( {{2^d}} \right)$$
GATE CSE Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET