1
GATE CSE 2016 Set 1
Numerical
+1
-0
We want to design a synchronous counter that counts the sequence $$0-1-0-2-0-3$$ and then repeats. The minimum number of $$J-K$$ flip-flops required to implement this counter is _________.
Your input ____
2
GATE CSE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider the Boolean operator $$ \ne $$ with the following properties:
$$x \ne 0 = x,\,\,x \ne 1 = \overline x ,\,\,x \ne x = 0$$ and $$x \ne \overline x = 1.$$ Then $$x \ne y$$ is equivalent to
A
$$x\overline y + \overline x y$$
B
$$x\overline y + \overline x \overline y $$
C
$$\overline x y + xy$$
D
$$xy + \overline x \overline y $$
3
GATE CSE 2016 Set 1
Numerical
+2
-0
The coefficient of $${x^{12}}$$ in $${\left( {{x^3} + {x^4} + {x^5} + {x^6} + ...} \right)^3}\,\,\,\,\,\,$$ is _____________.
Your input ____
4
GATE CSE 2016 Set 1
Numerical
+2
-0
A function $$f:\,\,{N^ + } \to {N^ + },$$ defined on the set of positive integers $${N^ + },$$ satisfies the following properties: $$$\eqalign{ & f\left( n \right) = f\left( {n/2} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,even \cr & f\left( n \right) = f\left( {n + 5} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,odd \cr} $$$

Let $$R = \left\{ i \right.|\exists j:f\left( j \right) = \left. i \right\}$$ be the set of distinct values that $$f$$ takes. The maximum possible size of $$R$$ is _____________________.

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12