1
BITSAT 2023
+3
-1

The equation of the line passing through $$(-4,3,1)$$ parallel to the plane $$x+2 y-z-5=0$$ and intersecting the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{-1}$$ is

A
$$\frac{x+4}{3}=\frac{y-3}{-1}=\frac{z-1}{1}$$
B
$$\frac{x+4}{-1}=\frac{y-3}{1}=\frac{z-1}{1}$$
C
$$\frac{x+4}{1}=\frac{y-3}{1}=\frac{z-1}{3}$$
D
$$\frac{x-4}{2}=\frac{y+3}{1}=\frac{z+1}{4}$$
2
BITSAT 2022
+3
-1

If the plane $$3x + y + 2z + 6 = 0$$ is parallel to the line $${{3x - 1} \over {2b}} = 3 - y = {{z - 1} \over a}$$, then the value of $$3a + 3b$$ is

A
$${1 \over 2}$$
B
$${3 \over 2}$$
C
3
D
4
3
BITSAT 2021
+3
-1

Angle between the diagonals of a cube is

A
$$\pi$$ / 3
B
$$\pi$$ / 2
C
cos$$-$$1(1/3)
D
cos$$-$$1(1/$$\sqrt3$$)
4
BITSAT 2021
+3
-1

Consider the two lines

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$ and $${L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \over 3}$$

The unit vector perpendicular to both the lines L1 and L2 is

A
$${{ - \widehat i + 7\widehat j + 7\widehat k} \over {\sqrt {99} }}$$
B
$${{ - \widehat i - 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
C
$${{ - \widehat i + 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
D
$${{7\widehat i - 7\widehat j + \widehat k} \over {\sqrt {99} }}$$
EXAM MAP
Medical
NEET