1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

The equation of the line passing through $$(-4,3,1)$$ parallel to the plane $$x+2 y-z-5=0$$ and intersecting the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{-1}$$ is

A
$$\frac{x+4}{3}=\frac{y-3}{-1}=\frac{z-1}{1}$$
B
$$\frac{x+4}{-1}=\frac{y-3}{1}=\frac{z-1}{1}$$
C
$$\frac{x+4}{1}=\frac{y-3}{1}=\frac{z-1}{3}$$
D
$$\frac{x-4}{2}=\frac{y+3}{1}=\frac{z+1}{4}$$
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If the plane $$3x + y + 2z + 6 = 0$$ is parallel to the line $${{3x - 1} \over {2b}} = 3 - y = {{z - 1} \over a}$$, then the value of $$3a + 3b$$ is

A
$${1 \over 2}$$
B
$${3 \over 2}$$
C
3
D
4
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Angle between the diagonals of a cube is

A
$$\pi$$ / 3
B
$$\pi$$ / 2
C
cos$$-$$1(1/3)
D
cos$$-$$1(1/$$\sqrt3$$)
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Consider the two lines

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$ and $${L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \over 3}$$

The unit vector perpendicular to both the lines L1 and L2 is

A
$${{ - \widehat i + 7\widehat j + 7\widehat k} \over {\sqrt {99} }}$$
B
$${{ - \widehat i - 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
C
$${{ - \widehat i + 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
D
$${{7\widehat i - 7\widehat j + \widehat k} \over {\sqrt {99} }}$$
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12