1
BITSAT 2021
+3
-1

Angle between the diagonals of a cube is

A
$$\pi$$ / 3
B
$$\pi$$ / 2
C
cos$$-$$1(1/3)
D
cos$$-$$1(1/$$\sqrt3$$)
2
BITSAT 2021
+3
-1

Consider the two lines

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$ and $${L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \over 3}$$

The unit vector perpendicular to both the lines L1 and L2 is

A
$${{ - \widehat i + 7\widehat j + 7\widehat k} \over {\sqrt {99} }}$$
B
$${{ - \widehat i - 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
C
$${{ - \widehat i + 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
D
$${{7\widehat i - 7\widehat j + \widehat k} \over {\sqrt {99} }}$$
3
BITSAT 2021
+3
-1

The distance between the line $$r = 2\widehat i - 2\widehat j + 3\widehat k + \lambda (\widehat i - \widehat j + 4\widehat k)$$ and the plane $$a\,.\,(\widehat i + 5\widehat j + \widehat k) = 5$$ is

A
$${10 \over {9}}$$
B
$${{10} \over {3\sqrt 3 }}$$
C
$${10 \over {3}}$$
D
None of these
4
BITSAT 2020
+3
-1

A line passing through P(3, 7, 1) and R(2, 5, 7) meet the plane 3x + 2y + 11z $$-$$ 9 = 0 at Q. Then PQ is equal to

A
$${{5\sqrt {41} } \over {59}}$$
B
$${{\sqrt {41} } \over {59}}$$
C
$${{50\sqrt {41} } \over {59}}$$
D
$${{25\sqrt {41} } \over {59}}$$
EXAM MAP
Medical
NEET