1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

The value of integral $$\int \frac{d x}{(1+x)^{3 / 4}(x-2)^{5 / 4}}$$ is is equal to

A
$$-\frac{3}{4}\left(\frac{x+1}{x-2}\right)^{1 / 4}+C$$
B
$$-\frac{3}{4}\left(\frac{x-2}{x+1}\right)^{1 / 4}+C$$
C
$$-\frac{4}{3}\left(\frac{x+1}{x-2}\right)^{1 / 4}+C$$
D
$$-\frac{4}{3}\left(\frac{x-2}{x+1}\right)^{1 / 4}+C$$
2
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let $$f(x)=\int \frac{\sqrt{x}}{(1+x)^2} d x$$, where $$x \geq 0$$. Then, $$f(3)-f(1)$$ is equal to

A
$$\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4}$$
B
$$-\frac{\pi}{6}+\frac{1}{2}+\frac{\sqrt{3}}{4}$$
C
$$-\frac{\pi}{12}+\frac{1}{2}+\frac{\sqrt{3}}{4}$$
D
$$\frac{\pi}{6}+\frac{1}{2}-\frac{\sqrt{3}}{4}$$
3
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

The value of $$\int {{1 \over {{{[{{(x - 1)}^3}{{(x + 2)}^5}]}^{{1 \over 4}}}}}dx} $$, is

A
$${4 \over 3}{\left( {{{x + 1} \over {x - 2}}} \right)^{{1 \over 4}}} + C$$
B
$${3 \over 4}{\left( {{{x - 1} \over {x + 2}}} \right)^{{1 \over 4}}} + C$$
C
$${4 \over 3}{\left( {{{x - 1} \over {x + 2}}} \right)^{{1 \over 4}}} + C$$
D
$${1 \over 3}{\left( {{{2x - 1} \over {4x - 3}}} \right)^{{1 \over 4}}} + C$$
4
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = \int {{{{x^2}dx} \over {(1 + {x^2})(1 + \sqrt {1 + {x^2}} )}}} $$ and $$f(0) = 0$$, then the value of $$f(1)$$ be

A
$$\log (1 + \sqrt 2 )$$
B
$$\log (1 + \sqrt 2 ) - {\pi \over 4}$$
C
$$\log (1 + \sqrt 2 ) + {\pi \over 2}$$
D
None of these
BITSAT Subjects
EXAM MAP