Matrices and Determinants · Mathematics · BITSAT

Start Practice

MCQ (Single Correct Answer)

1

If the system of linear equation $$3 x-2 y+z=2, 4 x-3 y+3 z=-5$$ and $$7 x-5 y+\lambda z=9$$ has no solution, then $$\lambda$$ equals to

BITSAT 2023
2

Let $$A=\left[\begin{array}{lll}3 & 2 & 3 \\ 4 & 1 & 0 \\ 2 & 5 & 1\end{array}\right]$$ and $$49 B=\left[\begin{array}{ccc}1 & 13 & -3 \\ -4 & -3 & 12 \\ \alpha & -11 & -5\end{array}\right]$$ If $$B$$ is the inverse of $$A$$, then the value of $$\alpha$$ is

BITSAT 2023
3

$$ \text { If } A=\left[\begin{array}{cc} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{array}\right] \text {, then } A(\operatorname{adj} A)^{-1} \text { equals to } $$

BITSAT 2023
4

If $$a, b, c$$ are non-zero real numbers and if the system of equations $$(a-1) x-y-z=0, -x+(b-1) y-z=0,-x-y+(c-1) z=0$$ has a non-trivial solution, then $$a b+b c+c a$$ equals to

BITSAT 2023
5

Given 2x $$-$$ y + 2z = 2, x $$-$$ 2y - z = $$-$$4, x + y + $$\lambda$$z = 4, then the value of $$\lambda$$ such that the given system of equation has no solution is

BITSAT 2022
6

Let $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]$$ and $$10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$

If B is the inverse of A, then the value of $$\alpha$$ is

BITSAT 2022
7

If $$\left[ {\matrix{ 1 & { - \tan \theta } \cr {\tan \theta } & 1 \cr } } \right]{\left[ {\matrix{ 1 & {\tan \theta } \cr { - \tan \theta } & 1 \cr } } \right]^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then

BITSAT 2022
8

If p $$\ne$$ a, q $$\ne$$ b, r $$\ne$$ c and the system of equations

px + ay + az = 0

bx + qy + bz = 0

cx + cy + rz = 0

has a non-trivial solution, then the value of $$\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$$ is

BITSAT 2022
9
If p$$\ne$$ q $$\ne$$ r and $$\left| {\matrix{ 0 & {x - p} & {x - q} \cr {x + p} & 0 & {x - r} \cr {x + q} & {x - r} & 0 \cr } } \right| = 0$$, then the value of x which satisfy the equation is
BITSAT 2021
10

Matrix $$A = \left| {\matrix{ x & 3 & 2 \cr 1 & y & 4 \cr 2 & 2 & z \cr } } \right|$$, if xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to

BITSAT 2021
11

An ordered pair ($$\alpha$$, $$\beta$$) for which the system of linear $$(1 + \alpha )x + \beta y + z = 2$$, $$\alpha x + (1 + \beta )y + z = 3$$, $$\alpha x + \beta y + 2z = 2$$ has a unique solution.

BITSAT 2020
12

Consider matrix $$A = \left[ {\matrix{ 2 & 1 \cr 1 & 2 \cr } } \right]$$, if $${A^{ - 1}} = \alpha I + \beta A$$, where $$\alpha$$, $$\beta$$ $$ \notin $$ R, then ($$\alpha$$ + $$\beta$$) is equal to (where A$$-$$1 denotes the inverse of matrix A)

BITSAT 2020
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12