Matrices and Determinants · Mathematics · BITSAT
MCQ (Single Correct Answer)
If the system of linear equation $$3 x-2 y+z=2, 4 x-3 y+3 z=-5$$ and $$7 x-5 y+\lambda z=9$$ has no solution, then $$\lambda$$ equals to
Let $$A=\left[\begin{array}{lll}3 & 2 & 3 \\ 4 & 1 & 0 \\ 2 & 5 & 1\end{array}\right]$$ and $$49 B=\left[\begin{array}{ccc}1 & 13 & -3 \\ -4 & -3 & 12 \\ \alpha & -11 & -5\end{array}\right]$$ If $$B$$ is the inverse of $$A$$, then the value of $$\alpha$$ is
$$ \text { If } A=\left[\begin{array}{cc} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{array}\right] \text {, then } A(\operatorname{adj} A)^{-1} \text { equals to } $$
If $$a, b, c$$ are non-zero real numbers and if the system of equations $$(a-1) x-y-z=0, -x+(b-1) y-z=0,-x-y+(c-1) z=0$$ has a non-trivial solution, then $$a b+b c+c a$$ equals to
Given 2x $$-$$ y + 2z = 2, x $$-$$ 2y - z = $$-$$4, x + y + $$\lambda$$z = 4, then the value of $$\lambda$$ such that the given system of equation has no solution is
Let $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]$$ and $$10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$
If B is the inverse of A, then the value of $$\alpha$$ is
If $$\left[ {\matrix{ 1 & { - \tan \theta } \cr {\tan \theta } & 1 \cr } } \right]{\left[ {\matrix{ 1 & {\tan \theta } \cr { - \tan \theta } & 1 \cr } } \right]^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then
If p $$\ne$$ a, q $$\ne$$ b, r $$\ne$$ c and the system of equations
px + ay + az = 0
bx + qy + bz = 0
cx + cy + rz = 0
has a non-trivial solution, then the value of $$\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$$ is
Matrix $$A = \left| {\matrix{ x & 3 & 2 \cr 1 & y & 4 \cr 2 & 2 & z \cr } } \right|$$, if xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to
An ordered pair ($$\alpha$$, $$\beta$$) for which the system of linear $$(1 + \alpha )x + \beta y + z = 2$$, $$\alpha x + (1 + \beta )y + z = 3$$, $$\alpha x + \beta y + 2z = 2$$ has a unique solution.
Consider matrix $$A = \left[ {\matrix{ 2 & 1 \cr 1 & 2 \cr } } \right]$$, if $${A^{ - 1}} = \alpha I + \beta A$$, where $$\alpha$$, $$\beta$$ $$ \notin $$ R, then ($$\alpha$$ + $$\beta$$) is equal to (where A$$-$$1 denotes the inverse of matrix A)