1
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
Let $ \mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \mathbf{b}=x \hat{\mathbf{i}}+\hat{\mathbf{j}}+(1-x) \hat{\mathbf{k}} $ and $ \mathbf{c}=y \hat{\mathbf{i}}+x \hat{\mathbf{j}}+(1+x-y) \hat{\mathbf{k}} $. Then, $ [\mathbf{a} \mathbf{b} \mathbf{c}] $ depends on
A
only $ y $
B
only $ x $
C
both $ x $ and $ y $
D
neither $ x $ nor $ y $
2
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
The magnitude of projection of line joining ( 3,4 , $ 5) $ and $ (4,6,3) $ on the line joining $ (-1,2,4) $ and $ (1,0,5) $ is
A
$ \frac{4}{3} $
B
$ \frac{2}{3} $
C
$ \frac{8}{3} $
D
$ \frac{1}{3} $
3
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let $$\mathbf{a}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$$ and $$a$$ unit vector $$\mathbf{c}$$ be coplanar. If $$\mathbf{c}$$ is perpendicular to $$\mathbf{a}$$, then c equals to

A
$$\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}})$$
B
$$\frac{1}{\sqrt{2}}(-\hat{\mathbf{j}}+\hat{\mathbf{k}})$$
C
$$\frac{1}{\sqrt{3}}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$$
D
$$\frac{1}{\sqrt{3}}(-\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$$
4
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

$$\widehat u$$ and $$\widehat v$$ are two non-collinear unit vectors such that $$\left| {{{\widehat u + \widehat v} \over 2} + \widehat u \times \widehat v} \right| = 1$$. Then the value of $$|\widehat u \times \widehat v|$$ is equal to

A
$$\left| {{{\widehat u + \widehat v} \over 2}} \right|$$
B
$$|\widehat u + \widehat v|$$
C
$$|\widehat u - \widehat v|$$
D
$$\left| {{{\widehat u - \widehat v} \over 2}} \right|$$
BITSAT Subjects
EXAM MAP