Inverse Trigonometric Functions · Mathematics · BITSAT
MCQ (Single Correct Answer)
1
If $ y=\tan ^{-1}\left(\frac{\sqrt{x}-x}{1+x^{\frac{3}{2}}}\right) $, then $ y^{\prime}(1) $ is equal to
BITSAT 2024
2
If $$\cot ^{-1} \sqrt{\cos \alpha}-\tan ^{-1} \sqrt{\cos \alpha}=x$$, then $$\sin x$$ is equal to
BITSAT 2023
3
If $$x \in \left( {0,{\pi \over 2}} \right)$$, then the value of $${\cos ^{ - 1}}\left( {{7 \over 2}(1 + \cos 2x) + \sqrt {({{\sin }^2}x - 48{{\cos }^2}x)\sin x} } \right)$$ is equal to
BITSAT 2022
4
The minimum value of $${({\sin ^{ - 1}}x)^3} + {({\cos ^{ - 1}}x)^3}$$ is equal to
BITSAT 2021