1
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
The line $ y=m x $ bisects the area unclosed by lines $ x=0, y=0 $ and $ x=\frac{3}{2} $ and the curve $ y=1+4 x-x^{2} $. Then, the value of $ m $ is
A
$ \frac{13}{6} $
B
$ \frac{13}{2} $
C
$ \frac{13}{5} $
D
$ \frac{13}{7} $
2
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
The area enclosed by the curves $ y=x^{3} $ and $ y=\sqrt{x} $ is
A
$ \frac{5}{3} $ sq. units
B
$ \frac{5}{4} $ sq. units
C
$ \frac{5}{12} $ sq. unit
D
$ \frac{12}{5} $ sq. units then $ k $ is
3
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

The area of the region bounded by the parabola $$y=x^2+1$$ and lines $$y=x+1, y=0, x=\frac{1}{2}$$ and $$x=2$$ is

A
$$\frac{23}{6}$$
B
$$\frac{23}{16}$$
C
$$\frac{79}{24}$$
D
$$\frac{79}{16}$$
4
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let the functions $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ be defined by $$f(x)=e^{x-1}-e^{-|x-1|}$$ and $$g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)$$. Then, the area of the region in the first quadrant bounded by the curves $$y=f(x), y=g(x)$ and $x=0$$ is.

A
$$(2-\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$$
B
$$(2+\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$$
C
$$(2-\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$$
D
$$(2+\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$$
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12