Differentiation · Mathematics · BITSAT
MCQ (Single Correct Answer)
1
If $ x \sqrt{1+y}+y \sqrt{1+x}=0 $, then $ \frac{d y}{d x}= $
BITSAT 2024
2
If $$y = \sin \left( {2{{\tan }^{ - 1}}\sqrt {{{1 - x} \over {1 + x}}} } \right)$$, then $${{dy} \over {dx}}$$ is :
BITSAT 2021
3
Let f(x) be a polynomial function of second degree. If f(1) = f($$-$$1) and a, b, c are in AP, then f'(a), f'(b) and f'(c) are in.
BITSAT 2020
4
Given that $$f(x) = 2{x^3} + {x^4} + \log x$$ and assuming g to be the inverse function of f, compute the value of g'(3).
BITSAT 2020