Limits, Continuity and Differentiability · Mathematics · BITSAT
Start PracticeMCQ (Single Correct Answer)
BITSAT 2023
The value of $$\lim _\limits{x \rightarrow 0} \frac{8}{x^8}\left(1-\cos \frac{x^2}{2}-\cos \frac{x^2}{4}+\cos \frac{x^2}{2} \cos \frac{x^2}{4}\right)$...
BITSAT 2023
$$
\text { The value of } \lim _\limits{x \rightarrow 0} \frac{(27+x)^{1 / 3}-3}{9-(27+x)^{2 / 3}} \text { equals to }
$$
BITSAT 2022
The value of $$\mathop {\lim }\limits_{x \to 0} {{1-\cos (1 - \cos x)} \over {{x^4}}}$$ is
BITSAT 2022
The value of $$\mathop {\lim }\limits_{x \to 0} {{{{(1 + x)}^{{1 \over x}}} - e + {1 \over 2}ex} \over {{x^2}}}$$ is
BITSAT 2021
The value of $$\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - {{\cos x}^2}} } \over {1 - \cos x}}$$ is
BITSAT 2021
If $$f(x) = \left\{ {\matrix{
{a{x^2} + 1,} & {x \le 1} \cr
{{x^2} + ax + b,} & {x > 1} \cr
} } \right.$$ is differentiable at x = 1, then...
BITSAT 2020
The value of $$\mathop {\lim }\limits_{x \to \infty } {1 \over n}\left\{ {{1 \over {n + 1}} + {2 \over {n + 2}} + .... + {{3n} \over {4n}}} \right\}$$...