1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

If $$\left(1+x^2\right) d y+2 x y d x=\cot x d x$$, then the general solution be

A
$$y=\frac{\log |\sin x|}{1+x^2}+\frac{C}{1+x^2}$$
B
$$y=\frac{\log |\sin x|}{1-x^2}+\frac{C}{1-x^2}$$
C
$$y=\frac{\log |\cos x|}{1+x^2}+\frac{C}{1+x^2}$$
D
$$y=\frac{\log |\cos x|}{1-x^2}+\frac{C}{1-x^2}$$
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

$$\left( {{{dy} \over {dx}}} \right)\tan x = y{\sec ^2}x + \sin x$$, find general solution

A
$$y = \tan x(\log |{\mathop{\rm cosec}\nolimits} x - \cot x| + \cos x + c)$$
B
$$y = {\sec ^2}x + \tan x + c$$
C
$$y = \log |\sec x + \tan x| + {\mathop{\rm cosec}\nolimits} \,x + c$$
D
$$y = {\tan ^2}x + \sin x + c$$
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Solution of $$\left( {{{x + y - 1} \over {x + y - 2}}} \right){{dy} \over {dx}} = \left( {{{x + y + 1} \over {x + y + 2}}} \right)$$, given that y = 1 when x = 1 is

A
$$\ln \left| {{{{{(x - y)}^2} - 2} \over 2}} \right| = 2(x + y)$$
B
$$\ln \left| {{{{{(x + y)}^2} - 2} \over 2}} \right| = 2(x - y)$$
C
$$\ln \left| {{{{{(x - y)}^2} + 2} \over 2}} \right| = 2(x + y)$$
D
$$\ln \left| {{{{{(x + y)}^2} + 2} \over 2}} \right| = 2(x + y)$$
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

The solution of $${x^3}{{dy} \over {dx}} + 4{x^2}\tan y = {e^x}\sec y$$ satisfying y (1) = 0, is

A
$$\tan y = (x - 2){e^x}\log x$$
B
$$\sin y = {e^x}(x - 1){x^{ - 4}}$$
C
$$\tan y = (x - 1){e^x}{x^{ - 3}}$$
D
$$\sin y = {e^x}(x - 1){x^3}$$
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12