1
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If $$\left[ {\matrix{ 1 & { - \tan \theta } \cr {\tan \theta } & 1 \cr } } \right]{\left[ {\matrix{ 1 & {\tan \theta } \cr { - \tan \theta } & 1 \cr } } \right]^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then

A
a = 1, b = 1
B
$$a = \sin 2\theta ,b = \cos 2\theta $$
C
$$a = \cos 2\theta ,b = \sin 2\theta $$
D
None of these
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If p $$\ne$$ a, q $$\ne$$ b, r $$\ne$$ c and the system of equations

px + ay + az = 0

bx + qy + bz = 0

cx + cy + rz = 0

has a non-trivial solution, then the value of $$\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$$ is

A
1
B
2
C
$$\frac{1}{2}$$
D
0
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1
If p$$\ne$$ q $$\ne$$ r and $$\left| {\matrix{ 0 & {x - p} & {x - q} \cr {x + p} & 0 & {x - r} \cr {x + q} & {x - r} & 0 \cr } } \right| = 0$$, then the value of x which satisfy the equation is
A
x = p
B
x = q
C
x = r
D
x = 0
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Matrix $$A = \left| {\matrix{ x & 3 & 2 \cr 1 & y & 4 \cr 2 & 2 & z \cr } } \right|$$, if xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to

A
$$\left[ {\matrix{ {64} & 0 & 0 \cr 0 & {64} & 0 \cr 0 & 0 & {64} \cr } } \right]$$
B
$$\left[ {\matrix{ {88} & 0 & 0 \cr 0 & {88} & 0 \cr 0 & 0 & {88} \cr } } \right]$$
C
$$\left[ {\matrix{ {68} & 0 & 0 \cr 0 & {68} & 0 \cr 0 & 0 & {68} \cr } } \right]$$
D
$$\left[ {\matrix{ {34} & 0 & 0 \cr 0 & {34} & 0 \cr 0 & 0 & {34} \cr } } \right]$$
BITSAT Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN