1
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If $$\left[ {\matrix{ 1 & { - \tan \theta } \cr {\tan \theta } & 1 \cr } } \right]{\left[ {\matrix{ 1 & {\tan \theta } \cr { - \tan \theta } & 1 \cr } } \right]^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then

A
a = 1, b = 1
B
$$a = \sin 2\theta ,b = \cos 2\theta$$
C
$$a = \cos 2\theta ,b = \sin 2\theta$$
D
None of these
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If p $$\ne$$ a, q $$\ne$$ b, r $$\ne$$ c and the system of equations

px + ay + az = 0

bx + qy + bz = 0

cx + cy + rz = 0

has a non-trivial solution, then the value of $$\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$$ is

A
1
B
2
C
$$\frac{1}{2}$$
D
0
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1
If p$$\ne$$ q $$\ne$$ r and $$\left| {\matrix{ 0 & {x - p} & {x - q} \cr {x + p} & 0 & {x - r} \cr {x + q} & {x - r} & 0 \cr } } \right| = 0$$, then the value of x which satisfy the equation is
A
x = p
B
x = q
C
x = r
D
x = 0
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Matrix $$A = \left| {\matrix{ x & 3 & 2 \cr 1 & y & 4 \cr 2 & 2 & z \cr } } \right|$$, if xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to

A
$$\left[ {\matrix{ {64} & 0 & 0 \cr 0 & {64} & 0 \cr 0 & 0 & {64} \cr } } \right]$$
B
$$\left[ {\matrix{ {88} & 0 & 0 \cr 0 & {88} & 0 \cr 0 & 0 & {88} \cr } } \right]$$
C
$$\left[ {\matrix{ {68} & 0 & 0 \cr 0 & {68} & 0 \cr 0 & 0 & {68} \cr } } \right]$$
D
$$\left[ {\matrix{ {34} & 0 & 0 \cr 0 & {34} & 0 \cr 0 & 0 & {34} \cr } } \right]$$
BITSAT Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
English Proficiency
Logical Reasoning
Verbal
Non Verbal
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Â© ExamGOAL 2023