1
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1
If p$$\ne$$ q $$\ne$$ r and $$\left| {\matrix{ 0 & {x - p} & {x - q} \cr {x + p} & 0 & {x - r} \cr {x + q} & {x - r} & 0 \cr } } \right| = 0$$, then the value of x which satisfy the equation is
A
x = p
B
x = q
C
x = r
D
x = 0
2
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Matrix $$A = \left| {\matrix{ x & 3 & 2 \cr 1 & y & 4 \cr 2 & 2 & z \cr } } \right|$$, if xyz = 60 and 8x + 4y + 3z = 20, then A(adj A) is equal to

A
$$\left[ {\matrix{ {64} & 0 & 0 \cr 0 & {64} & 0 \cr 0 & 0 & {64} \cr } } \right]$$
B
$$\left[ {\matrix{ {88} & 0 & 0 \cr 0 & {88} & 0 \cr 0 & 0 & {88} \cr } } \right]$$
C
$$\left[ {\matrix{ {68} & 0 & 0 \cr 0 & {68} & 0 \cr 0 & 0 & {68} \cr } } \right]$$
D
$$\left[ {\matrix{ {34} & 0 & 0 \cr 0 & {34} & 0 \cr 0 & 0 & {34} \cr } } \right]$$
3
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

An ordered pair ($$\alpha$$, $$\beta$$) for which the system of linear $$(1 + \alpha )x + \beta y + z = 2$$, $$\alpha x + (1 + \beta )y + z = 3$$, $$\alpha x + \beta y + 2z = 2$$ has a unique solution.

A
(1, $$-$$3)
B
($$-$$3, 1)
C
(2, 4)
D
($$-$$4, 2)
4
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Consider matrix $$A = \left[ {\matrix{ 2 & 1 \cr 1 & 2 \cr } } \right]$$, if $${A^{ - 1}} = \alpha I + \beta A$$, where $$\alpha$$, $$\beta$$ $$ \notin $$ R, then ($$\alpha$$ + $$\beta$$) is equal to (where A$$-$$1 denotes the inverse of matrix A)

A
1
B
$${4 \over 3}$$
C
$${5 \over 3}$$
D
$${1 \over 3}$$
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12